
www.manaraa.com

An Architecture for Practical Delegation in a Distributed System

Morrie Gasser, Ellen McDermott*

Digital Equipment Corporation

BXB1-2/D04

85 Swanson lloacl

Boxborough, Massachusetts 01719-1326

Abstract

Delegation is the process whereby a user in a distributed environ-
ment authorizes a system to access remote resources on his behalf.
In today’s distributed systems where all the resources required to
carry out an operation are rarely local to the system to which
the user is logged in, delegation is more often the rule than the
exception. Yet, even with the use of state-of-the-art authentica-
tion techniques, delegation is typically implicit and transparent to
the remote system controlling the resources, making it difficult for
that system to determine whether delegation was authorized by
the user. This paper describes a practical technique for delegation
that provides both cryptographic assurance that a delegation was
authorized, and authentication of the delegated systems, thereby
allowing reliable access control as well as precise auditing of the
systems involved in every access. It goes further than other ap-
proaches for delegation in that it also provides termination of a
delegation on demand (as when the user logs out) with the as-
surance that the delegated systems, if subsequently compromised,
cannot continue to act on the user’s behalf. Delegation and revo-
cation are provided by a simple mechanism that does not rely on
online trusted servers.

1 Background

On any standalone computer system with resources to pro-

tect, users authenticate themselves through a trusted path

[DOD85] to some form of reference monitor [Ames83] in con-

trol of the objects in the system. The reference monitor typ-

ically associates an active entity, such as a process, with the

authenticated user. Access requests made by the process are

enforced by the reference monitor as if the associated user

had made them directly. The access control scheme may be

identity-based, using mechanisms such as access cent rol lists

(ACLS), rule-based, according to a mandatory security policy,

or a combination of both.

Despite the possible presence of Trojan horses in the user’s

*This paper presents the opinion of its authors, which are not neces-
sarily those of the Digital Equipment Corporation. Opinions expressed
in this paper must not be cwrstrucrt to imply any product commitment
on the part of the Digital Equipment Corporation.

DEC, DNS and VMS are trademarks of Digital Equipment Corporation.

Unix is a trademark of American Telephone and Telegraph Company.

CH2884-5/90/OOOO/O020$Ol.00 @ 1990 IEEE

process, the reference monitor has no choice but to believe

that the access request made by a process reflects the user’s

wishes. The fact that the user has authorized the process to

act on his behalf (by logging in and authenticating himself) is

sufficient grounds on which to base this belief. Only in excep-

tional cases, where the user makes a request directly to the

reference monitor through a trust cd path, can the reference

monitor know the user’s intent with certainty.

The user’s authorization of his process to act on his behalf

is a form of delegation of rights from the user to the process.

In some cases the user may delegate the rights of one of sev-

eral permissible roles or identities (e.g., by logging in using

different names and/or passwords), in order to limit the ac-

tions of the process to some subset that the user is authorized.

Limited delegation also occurs routinely in multilevel secure

systems where the user selects a single classification for his
process that is a subset of the access classes for which the

user is authorized.

In a distributed system the reference monitor in a computer

system also enforces access requests from its local processes,

but these processes are not necessarily associated with local

users that the reference monitor has direct ly aut henticat cd.

Most likely the local process has been activated by another

process on some remote system to which the user is logged in,

where the login syst em’s refcrencc mmrit or has aut hcnt icat ed

the user. How should the local reference monitor dctcrrnine

the identity of the user to associate with its local process?

The most straightforward approach is for the local reference

monitor to ask the remote login system to supply the user’s

identity. In this case the reference mcmi tor trusts thc login

system to properly authenticate the user. But this Icvcl of

trust is too great to bear in the world of mutually suspicious

systems.

To limit the need to trust the iogin system the local refer-

ence monitor can ask the login system to supply a password

for the user. The login system, in turn, obtains the password

from the user and forwards it to the local systcrn. Receipt of

the password is taken as evidence that the user is currently

at the login system. Asking for a password requires a bit lCSS
trust than simply believing the login systcm’s claim, but is

still not very secure because the login systcm, if malicious,

has a chance to capture and replay the password at a later

20

www.manaraa.com

time. Any system to which the user has ever logged in (since

he last changed his password) can masquerade as the user to

the local reference monitor.

A more secure technique for authenticating the remote user

employs a cryptographic algorithm and a hardware device op-

erat ed by the user, allowing the reference monitor to deter-

mine that the user is in fact currently logged into (or commu-

nicating through) the login system in a manner that cannot

be spoofed by the login system. A number of “see-through”

authentication devikes are available that will accomplish this

[NCSC87a, Racal]. (A see-through device is one that permits

the authentication dialog between the user and the remote ref-

erence monitor to take place without special hardware phys-

ically at tached to a terminal.) More convenient for the user,

but requiring special hardware, is some type of smart card

that carries out the cryptographic challenge/response proto-

col for the user.

Once the user properly authenticates himself through his

login system to the reference monitor, the reference monitor

associates the user’s identity with a local process and sets up

some form of “secure channel” between the local process and
the Iogin system.1 As in the case of the standalone system,

the reference monitor explicitly trusts its local process to act

on behalf of the user, but in addition, by setting up the se-

cure channel, the reference monitor implicitly trusts the login

system to be faithful to the user’s wishes. The fact that the

user has authenticated himself through that login system is

sufficient grounds on which to base this additional trust. By

authenticating himself through the login system the user has

delegated to that system, and by establishing a connection to

the reference monitor’s local process the login system in turn

has delegated to the process.

By directly authenticating the remote user in an unspoofa-

ble manner the reference monitor can reliably enforce access

controls without trusting any components of the distributed

system to which the user did not delegate. But interactive

aut hcnt icat ion of the rcmot e user by the reference monitor is

not always practical. Except for examples of “terminal em-

ulation” as in the common use of TCP/IP’s telnet or Unix

rlogin, it is not always convenient, or possible, for the ref-

erence monitor to freely interact with the user to carry out

the authentication dialog. Consider a file server behind a

database server that is accessed by a query processor running

on the user’s login system (figure 1). It is not practical to

Query processor on
User

DBMS
Iogin system Server

Figure 1: Multiple levels of indirection in an access. The
reference monitor in the file server cannot directly authenticate
the user on behalf of whom the request was made.

expect the file server to directly anthcnticate the user at the

time it receives the access request from the DBMS server on

lIdeally thk secure channel should be an integrity-protected commu-
nications path using some form of encryption.

behalf of the user, as the user may be operating in an entirely

different context and may not even be logged in at the time

the query is processed. Similar problems occur with trans-

act ion processing applications. Any delegation mechanism

suitable for general-purpose distributed computing must not

require real-time interaction between the remote user and the

reference monitor.

2 Overview of the Architecture

Thedclcgation architecture described hcrepmrnits thercfer-

ence monitor to know whether the remote user has delegated

to a login systcm without communicating directly with the

user or with any online trusted third party. The delegation

feature is very similar to that irnplcmentedby the Kerbcros

V4 [Miller87] authentication system, except that Kerbcms

requires an online authentication server to initiate the dele-

gation. Our usc of publickcy cryptography eliminates Kcr-

beros’s need for anonlinetrustcd serverat delegation time.

This architecture goes further than Kcrberos V4 in that it

permits a “chain” or cascade of delegations through multi-

ple systems (such a feature, aIso called “authentication for-

warding” or “proxy”, is proposed for Kcrberos V5 [Koh189]

and was also discussed by Kargcr [Kargcr86] and Girling

[Girling83]). Inourchain ofdclegations thcrefcrence monitor

knows that all systemsin thcchai nareauthoriz cddclegates.

In addition, the reference monitor can determine the idcntit y

of those systems (as well as that of the user) foranditing and

access control purposes.

Onc additional feature, not known by us to be prcscrrt in

other authentication forwarding schemes, permits the dele-

gation to be explicitly terminated by the user so that the

intermediate systems, if compromised subsequent to the ter-

mination, cannot make usc of the rights attained through

delegation. This instant revocatio no fdclcgatio nondcma.nd

provides more security than preset timeouts used in other sys-

tems. Other systems that implernentinstant revocation doso

with thehclp ofonlin eauthenticatic mservcrs[Girling82] and

indirection [Redel174].

In our scheme delegations are specified by public key cer-

tificates that aredynamically created at thenscr’sloginsys-

tem. Because they areunforgcable tokens serving as proofof

authorizc(t access, delegation certificates arc very much like

traditional capabilities, except that possession of the ccrtifi-

cateis not sufficient topcrmit access. Access ispermittcdby

only those whoposscss thecertificateaud who canprovethcy

possess acryptographic keynamed intheccrtificate. Onrusc

of digital signatures protects the integrity of the certificate,

and the key in the certificate prevents use by other than the

authorized holder.

R,cdell [Redcl174] first proposed the concept of capability

sealing to prevent forgery using a tagging mechanism, and

a number of tagged architectures have been proposed and
implemented. Mullender snggcsted, in the Amoeba system

[Mullcnder85], that encryption and digital signatures be used

if forgery and misuse of capabilities by unauthorized users is

a concern. Girling’s capabilities cent ain one-time keywords

21

www.manaraa.com

to prevent forging, but the capabilities must be kept secret

because keywords in capabilities communicated over the wire

can be captured and re-used. In a distributed system where

delegation credentials must be transferred to potentially un-

trusted locations (a topic on which we elaborate later), se-

crecy of a certificate cannot be assumed. Our delegation

credentials are similar to the privilege attribute certificates

(PACS) in ECMA’S “Security in Open Systems” framework

[ECMA89], except that ECMA’S certificates are created by a

trusted online authentication service rather than by the user’s

login system.

3 Context and Definitions

This delegation architecture is specified within the framework

of Digital’s Distributed System Security Architecture (DSSA)

[Gasser89], an outgrowth of work originated by Birrell, et al.

[Birrel186]. While DSSA incorporates the notion of a clearly

defined, protected “reference monitor” normally used to de-

scribe security-kernels, DSSA does not concern itself with de-

grees of assurance and is equally applicable to systems built

using standard commercial practices.

Under DSSA users log into local systems using smart cards

that carry out cryptographic authentication based on RSA

public key cryptography [Rivest78]. Online directory ser-

vices implementing a hierarchical name space based on Dig-

ital’s naming service (DNS) [Lampson86], similar to X.500

[CCITT88a], are available throughout the distributed system,

and concepts similar to those discussed in X.509[CCITT88b]
are used for certification and authentication. For the most

part, directory services are not trusted for security. The user

authentication mechanism for DSSA is covered in detail by

Linn [Linn90].

Any entity that can authenticate itself or can make an ac-

cess request on its own or another’s behalf is called a “princi-

pal.” We generally do not have to distinguish between differ-

ent types of principals, although for clarity we often use more

descriptive terms such as user, workstation, process, system,

or server. Principals are identified by a global name. All

principals possess a relatively permanent cryptographic se-

cret consisting of the private component of an RSA key, and

have the ability to authenticate themselves to other systems

or to digitally sign certifrcat es using their private keys. The

names and public keys of principals are usually bound to-

gether in a certificate signed by a certifying authority (CA)

and stored in the directory service.

The distributed system consists of a collection of au-

tonomous, mutually suspicions computer systems, each with
its own reference monitor. Except for compliance with a

common set of protocols and naming conventions for interop-

erabili ty, the reference monitors are not centrally managed.

Each reference monitor implements discretionary and mandat-

ory access controls and enforces its own security policy for
access to the objects under its control. DSSA specifies the use

of ACLS for each object, where the ACL lists the global names

of principals and their access rights. The names on an ACL

may identify users, systems, groups of users and systems, or

groups of groups, and the ACL can specify that access by a
user is permitted only from a given set of delegated systems.

4 Simplified View of Delegation

Our simplified model of computing involves a user logged into

a workstation that issues requests to access remote resources

on behalf of that user. In general, however, the workst at ion

can be any multi-user computer system, and the user need

not be physically present or ‘logged in’) at the time the access

request is made.

Local uses of a workstation require no explicit delegation.

If the user logs into a standalone workstation, access to local

files within the workstation is controlled by the workstation’s

reference monitor (figure 2).

Workstation W I
“print File Alpha

User P Alpha”_ ~roce55 “Open@lpha>readJ”
Sc

ACL for Alpha

~
I 1 II

Figure 2: Access to local resources. No delegation is required
when the user, authenticated to the workstation W by his smart
card, accesses files on that directly attached system.

Because the reference monitor has authenticated the user,

and because the reference monitor maintains a secure physical

channel between the user and the process, the process cannot

forge the identity of the user on behalf of whom it is operating,

This form of implicit delegation for access to local resources is

a common occurrence in today’s systems and does not require

special delegation mechanisms.

4.1 Single-level Delegation

The simplest example of distributed delegation is from a

user to his workstation, so that the workstation can access

the user’s files resident on a remote server. In figure 3, if the

m

Certificates:

1~] CA authorizes “.s(7 signs for pA Authentication CA SC ZSP

D1 Delegation ~{ SC authorizes “WI speaks for P“

Figure 3: Delegation to workstation. SC delegates to WI for
access to files on WS-. The delegation certificate Ill is passed to
the W5 along with the access request.

user (P), through his local workstation (W1), needs to access

22

www.manaraa.com

remet e files on a server (WS), theuser must delegate to the

workstation the ability to access those files on his behalf. This

delegation delegation must result in a set of credentials that

permit WI to prove it was an authorized delegate.

The delegation from the user to the workstation is repre-

sented by a delegation certificate, signed by the user’s smart

card at login time (certificate D1 in figure 3), authorizing the

specific workstation to speak for the specific user. The dele-

gation certificate format we show, ~1 means that

SC signed a certificate authorizing W1 to speak for P. In

other words, SC has authorized WI to access anything that

P can. The workstation passes this certificate, as proof of

delegation, to any server to which the workstation submits a

request on behalf of P.

For this scheme to be robust there must be a secure chan-

nel (encrypt ed or physically protected link) between the Ws

and WI. The secure channel provides (1) authentication to

verify the identity of WI, so that the server knows it is re-

cei ving the request from the syst cm named in the delegation

cxmtificate, and (2) integrity so that the server can be sure

the request is the same as the one WI sent. Mechanisms to

provide secure communications channels are well known and

are outside the scope of this delegation architecture. While

we require secure communications for a completely foolproof

system, significant improvement in security is attained by the

use of this architecture even wit horrt secure cornmunicatious.

Integrity of the delegation mechanism discussed here does not

depend on integrity of this secure channel.

Shown for completeness in figure 3 is an authentication

certificate authorizing the smart card to represent the user:

1~1. This certificate is signed in advance by some

certifying authority that associates the smart card with the

user. The details of the certification and authentication pro-

cess, covered elsewhere [Linn90], are not important to this

discussion, but it is worth noting that the authentication cer-

tificate A is static information probably stored in the direc-

tory service, as compared to the delegation certificates that

are dynamically crest cd. Even wit h secure channels between

all the systems, the authentication certificate is needed by the

server to verify that the user narncd in the access request (P)

is the owner of the smart card (SC) that signed the delega-

tion certificate. Since authentication crxtificates are available

to systems from the directory service, we don’t show A being

passed from WI to Ws.

The server WS enforces an ACL that contains the name of

the user and also may list the name of the workstation(s) to

which the user may delegate. Both nscr and workstation(s)

must have access permission in order for the request to be

granted. Before granting access, the server scans the ACL,

looking for a user name and system name that matches those

identified in the delegation certificate. Of course, the refer-
ence monitor must insure that the user named in the request,

and the authenticated identity of the system making the re-

qncst, are also be the same as those named in the delegation

certificate.

4.2 Chained Delegations

In many situations there is more than one system between

the user and the server. In figure 4 the user on workstation

WI accesses a file on the server Ws, but that request is in fact

made by W2, acting on behalf of the user. In this case, the

user delegates to WI which in turn delegates to W2 to act on

behalf of the user.

The first delegation from the user to the workstation hap-

pens as before, where WI is authorized to speak for the

user (certificate e DI in the figure). The second dclegat ion

l~]says thatWI permits Wz to speak for the user.

Before making any access requests to the server, W2 forwards
to the server a copy of both its own and WI’s delegation cer-

tificate (Dl and D2). Through a chain of reasoning using DI,

D2 and A the server can conclude that W2 is authorized to

speak for the user. Both WI and W2, as well as P, must be

named on the ACL.

Note that the server has no proof, and does not care,

whether WI or the user actually made any access request.

The server only knows that the delegations have been autho-

rized and, as in the single workstation case, must trust W2 to

act in good faith on behalf of both WI and the user.

5 Details of the Delegation Process

The simplified overview of delegation above, where delega-

tion certificates mention the names of the dclcgatcd syst cms,

has some security weaknesses anrl is also insufficiently pre-

cise to be implcrnentcd directly. This section provides a more

thorough description of the delegation process with additional

motivation for the mechanisms.

5.1 Creating and Using Delegations

Once a delegation has been received, the dclcgatcd princi-

pal may make requests to access an object on behalf of the

delegating principal, and may further dclcgatc by authorizing

a third principal to act on behalf of the original delegator. As

we indicated earlier this delegation can be “chained” to an ar-

bitrary number of other principals. The rcrp.rests to access an

object on a target systcm made by any of the rkkgatcd prin-

cipals, when explicitly indicated as requests that are being

made on behalf of the first principal, are mediated by the

reference monitor of the target system as if the requests had

been made directly by the first principal. An additional con-

straint is that all the delegated principals in the chaiu must

be listed on the ACL of the object as permitted clclegates.

Mandatory access cent rols, if cmployrd by the trugct sys-

tem, may further limit access to the ot)jcct. While the details

of the mandatory security policy and its mechanisms arc not

relevant to this discussion of dclcgat ion, it is worth noting

that a reference monitor that enforces a label-based policy
need only know the security label or “access class range” as-

sociated with the systrxn from which it directly receives the

access request, usually the last systcm in the delegation chain,

and not the label of every system involved in the delegation.

23

www.manaraa.com

D1
—

“read Alpha for P“

EImii21 Wz
ACL for Alpha

D2 ~1
*
I Wz I delegate read

Certificates:

A Authentication ~1 CA authorizes “S(3 signs for P“

D1 Delegation ~1 SC’ authorizes TVl speaks for P’

Dz Delegation 1~] WI ..th.ri.es ‘TV, speaks for P“

Figure 4: Delegation two levels deep.

This is because no system can be permitted to communicate
outside its access class range, and within that range the sys-

tem must be trusted to specify the proper access class of every

request. Dclcgat ion at a specific access class does not provide

any security benefit over simple assertion of the access class

by the last system in the chain.

Delegation is authorized solely by signed delegation ccr-

tificatcs. In a chain of delegations each principal retains a

delegation certificate for itself signed by the previous princi-

pal in the chain, and signs a delegation to the next principal

if it chooses.

Any principal in the chain wishing to access an object on

behalf of the first principal must obtain a copy of all the dcle-

gatiorr certificates for the previous principals in the chain and

must forward those copies to the reference monitor along with

the access request. The rcfcrcnce monitor must validate the

chain of certificates, being sure the certificates are linked by

authorized delegates, in addition to enforcing the ACL of the

object. (Once the reference monitor has verified tkc validity

of a delegation chain the information can be cached and the

certificates need not be forwarded on snbscqucnt requests.)

5.2 Delegation Timeout

Typically each system in the chain will keep copies of all

the delegation certificates for the systems prior to it so it

can forward those copies to the next principal or to the refer-

ence monitor as required. When the delegations are no longer

needed, as when the original riser logs out, the systems in

the chain should not continue to represent the user. As we

stressed earlier, good systems are expected to act in the best

interests of the user, and the user must assume that no sys-
tem to which he delegates will delegate to another systcm that

the user doesn’t trust. Bnt, in case one of the systems in a

chain is in fact corrupt and doesn’t act according to the rules,

each certificate contains a timeout that limits the period dur-

ing which the corrupt system could continue to operate on

the user’s behalf. If any of the certificates in the chain have

timed ont, the reference monitor will grant no access.

Timeouts are expected to be reasonably long, on the order

of a day or more, so that a typical interactive session will not

be interrupted by a timeout. For very long sessions where

S(7 delegates to WI which delegates to IVz.

expiration is imminent a delegation renewal is initiated by
the user’s local workstation and propagated to all the systems

that have received soon-to-expire delegation certificate es. This

renewal requires that the workstation rcauthcnticatc the user,

requiring that the user re-cnt er his smart card or password,

because the first certificate in the chain must be signed by the

user’s private key which the workstation does not possess. In

case the user is no longer physically present at the original

workstation, as is the case for batch or background jobs when

the user may have logged out long ago, restricted delegations

are used. These topics are discussed in section 7.3.

Timcmrts are more difficult to implement if the certificate

cannot be cryptographically iutcgrity-protected. Girling’s ca-

pabilities are timed out with the help of an online authentica-

tion server that is queried at appropriate intervals, and which

must signal a timeout to all systems that have made the query.

5.3 Delegation Keys

Whereas a system must be assumed to behave properly

while a delegation to it is in effect, it would be nice if a sub-

scqncnt compromise of a previously trnstcd system did not

place previous users of the trusted system at risk. In other

words, a systcm, while it is still operating on behalf of the

user, should be able to prevent its own future compromise

from affecting that user. Eventually delegations time out, so

a compromise of a system can only affect users who recently

delegated to the system, bnt for the 24 hours or so that the

delegation is still in effect a user might rightly be concerucd

about a possible compromise of his system after he has logged

out. This scenario is a serious threat in an environment of

public workstations where anyone can use the machine after
the user departs.

Immediate revocation of a delcgatiors could be implemented

by deleting copies of all delegation certificates in a chain from

the user to all servers. In schemes such as Girling’s, us-

ing one- time passwords for proof of delegation, each system

need only delete its password. But delegation certificates are
“public” and their whereabouts cannot be constrained. Even

though the legitimate systems in the delegation chain could

be trusted to delete their own copies of the delegation certifi-

cates, there are additional copies of the delegation certificates

24

www.manaraa.com

not under control of any of the trusted systems in the chain.

In particular, the server for an object need not be one of

the delegates, yet it must receive a copy of the delegation cer-
tificate for each of the systems in the chain. In order to access

files on a server, a good system in the chain will have a legit-

imate need to forward all delegation certificates to the server

whether or not the good system trusts the server enough to

delegate to it. (In a distributed system where the user has ac-

cess to data on many different servers, there are cases where

a user authenticates himself in order to access data on one

server does but not trust that server for access to data on

a different server.) A malicious server desiring to make use

of the user’s rights to access information resident on another

server could retain copies of the received certificates even after

all copies have been deleted by the delegated systems. These

copies are of no direct use to the malicious server, because

the server is not named in any of the delegation certificates

and would therefore not be able to represent the user when

making a request to another system. But if, at some time

after Iogout but before expiration, one of the previously good

systems in the chain is compromised by an accomplice of the

malicious server, the compromised system can retrieve the

certificates from the server and can then act on behalf of the

original user for access to any file on any other good server,

until the delegation certificates expire.

The above scenario may seem a bit far-fet ched, but it points

out that a delegation certificate may have to be disclosed to

a principal not trusted as much as the named delegate. In

any public key scheme it is generally unsafe to assume that

a digitally signed certificate e is confidential. As a minimum,

certificates in transit can be captured by wirct appcrs.

To avoid this type of reuse of a delegation after the “ses-

sion” ends but before the timeout, the delegation is based

on a “delegation key. ” A delegation key is a public/private

keypairgeneratcd bythedelegated system for each session.

The public component of the key is named in the delegation

certificate signed by the delegating system, and the private

component is held by the delegated system, which it uses

toauthenticate itself to the server and to sign the next del-

egation certificate (if any). Figure 5 shows a more precise

version of the two-level delegation in figure 4 illustrating the

keys used intheccrtificates. Inthisand future diagrams we

show certificates more precisely by replacing the name of the

signer of the certificate with the key used to sign it.

Certificate A shows that thepublic keyof the smart card,

KO, is certified by the CA’s private key, KCA. KI is the public

delegation key generated for the current session, the private

portion of which is held by WI, and certificate Dl, signed

by the smart card’s private key, specifies that the private

component of K1 is permitted to speak for the user. Similarly,

K2 is authorized to speak for the user through the certificate,

D2, signed by the private component of K1. The delegation

certificate format here is expanded to include the timeout plus
a new field for the delegation kcy in addition to the names of

the principal and workst ations:2

‘We don’t explicitly bother to ia&lcate in these figures the private
vs. public components of the keys; thk should be obvious from context.

[K. IKl a. WI for P until T]

The certificate continues to include the workstation name WI,

because that name is needed for lookup on the ACL, but the

delegation is to the key KI.

Using certificate D2 in figure 5 the server (W~) will only

accept a request from W2 on behalf of the user if Wz can prove,

at the time it makes the request, that it possesses the private

component of K2. To provide this proof W2 could digitally

sign its request with the private component of 1{2, but more

likely it will send the request on a secure communications

channel K2S, between W2 and Ws. W2 associates this secure

channel wit h K2 through a challenge/response protocol wi th

W2, where Wz proves it possesses thc private component K2

named in certificate D2.

Now, when the delegations are no longer needed, the del-

egated systems WI and W2 erase the private components of

their delegation keys KI and Kz, rendering USCICSSany copies

of the delegation certificates held by Ws. If Wz is subse-

quently compromised, Wz can attempt to obtain from Ws

and reuse the delegation certificates, but since the private

component of K2 was not saved, Wz can no longer success-

fully respond to any challenges from other servers to verify

its possession of K2’s private component as required by cer-

tificate D2.

If WI, ratbcr than Wz, is subsequently compromised, there

are two things WI can attempt to do. WI can attempt to

reuse the old delegation certificate D1 as proof that it is still

dclcgatcd or it can attcrnpt to sign a new delegation certifi-

cate D; (for another system W:, perhaps) using the private

component of the old delegation kcy KI. But the old dele-

gation certificate D1 is useless because neither W2 nor any

other system possesses the private component of the delega-

tion key Kz mentioned in that certificate. A new delegation

to W; will require a new certificate with a ncw delegation

key pair K!, which WI will not be able to sign with KI’s pri-

vat e component. Hence, IVl has no choice but to gencrat e a

ncw delegation kcy pair for itself K{, but K~ is useless unless

signed by the smart card delegating to this key. The smart

card will only sign such a certificate if the user is willing to

log into, and dclcgatc to, the compromised systcm.

In practice it is nnlikcly that a server will challcngc a work-

station for possession of the delegation kcy on every access

attempt, since that would seriously impact performance. In-

stead, Ws will assume that any message on the sccurc channel

K2S is on behalf of P (if so claimed by W2) once proof of del-

egation and possession of K2 has already been established.

Therefore, in order to completely tcrmiuate the delegation,

W2, in acldition to deleting its private compoucnt of K2, must

inform WS to tear down the sccurc channel. If W2 then tries

to reopen a channel to Ws, a new certificate and proof of

possession will be required --something W2 cannot do if it

has erased its key.

It should bc andcrstood that signatarcs are always done asing private
componcats, and only public components arc transmittcxi between prin-
cipals as “data” in a certificate. Private mmponmts are never disclosed
to other principals.

25

www.manaraa.com

Certificates:

A Authentication

~

Em3@l KCA signs ‘(KO signs for P“

D1 Delegation K. IK1 as WI for P KO signs “K1 as W1 speaksfor P’

D2 Delegation K1 IK2 as W2 for P KI signs “K2 as W2 speaks for P“

Figure 5: Delegation keys. Delegation is expressed in terms of the ability of a system W~ to speak on the user’s behalf if it possesses
the delegation key K;. W, uses K~ to authenticate itself and to sign further delegation certificates.

Successful revocation depends cm the reliability of commu-
nications. Since an attacker could disrupt communications

and defeat the revocation, it may be desirable for the server

and each intermediate delegate to periodically rcauthenticate

delegates (by challenging them for possession of Kz) at some

interval (say, an hour) that is much smaller than the timeout

but not so often that performance is hampered.

A reasonable question may be why we require each system

IVi in the chain to have a separate delegation key Ki, rather

than simply forwarding to each Wi copy of KI used by the

first system. The primary reason is to limit the scope of trust.

If all systems share the same delegation key then WI cannot,

at the end of the session, prevent a future attacker of WI

from starting new delegation chains from WI if subsequent

systems in the existing chain are corrupt and working in col-

lusion with the attacker. This is a minor problem (since the

corrupt systems can do considerable damage anyway through

the existing delegation chain) but is easily avoidable by using

different keys. Also, securely forwarding the key to the next

system requires encryption, a service that we do not expect to

be universally available for a number of reasons. Nothing in

our delegation architecture depends on the use of encryption

for confidentiality.

6 Practical Refinements

The structure of a delegation certificate used in figure 5,

[Kd Il{i as Wt for P Until T [

has the public delcgatimr key Kt, the name of the delegated

(target) system W,, and the name of the original delegating
principal in the chain P, all signed by the private component

of the delegation key, Kd, of the previous delegator in the

chain. Though adequate in principal, practical considerations
diet ate some further refinements.

6.1 Roles

So far we assume that the user has one identity whose full

access rights he delegates when signing the first delegation

certificate in the chain. We can provide more flexibility in

the use of “roles” where users may have a number of aliases,

each identified by a role name. Role names may appear on
ACLS as if they were user names, and it is possible to set up

both very restrictive roles (that don’t have access to much

of int crest) as well as privileged roles (that have access to

more than usual), by appropriate usc of role names on ACLS.

Within DSSA, roles are simply (small) groups, and they work

very much like the groups in Unix, “*. proj ect” names in

Multics [Organick72], or rights identifiers in VMS.

By placing the role name in thc delegation certificate, a user

can specify that access available to only the role is dclcgatcd,

This use of a role is a restriction on the delegation, and is

accommodated by substituting the mlc name R for the the

user’s name P:

IKd IKt as Wt for R untd T

The reference monitor will grant access only if R is named on

the ACL of the object.

Since the reference monitor now uscs the role name to en-

force access, the reference monitor must ascertain that the

role is authorized for the user whose smart card signed the

first delegation certificate in the chain. Also, the real user’s

name P, in addition to the role name R, must be available to

the reference monitor for auditing purposes. But the name

P does not need to be bound into the certificate (it is sim-

ply communicated to the server as a “hint”) because dcuial

of service is the only effect of giving a false name, A hint is

adequate because the reference monitor must fct ch the user’s

anthcntication certificate from the directory service anyway

in order verify the signature on the first delegation certificate,

and the authentication certificate is what certifies P and its

public key. The reference monitor determines whether R is

an authorized role for P by similar lookup of certificates in
the directory. The prccisc description of the mcchauisms by
which the user asserts a role at login time, and the validation

of authorized roles, is a topic for a future paper,

6.2 UIDS and Public Keys as Identifiers in

Place of Names

In any implementation, human-readable names for users

and systems, as specified on ACLS, do not uniquely identify

a user or systcm. Even in the case of a structured name

26

www.manaraa.com

space (as in DNS or X.500), there is the need for soft links intO subsequent Certificatees. UR replaces the role name R in

topermit transparent name space reorganizations (and other the certificate. For delegated systems, which are not qualified

conveniences) as described in DSSA. Because of these links by roles, we can use the public kcy Kw, as the unique name

there may be more than one global name for a given princi- in place of the system name Wi.

pal, and it is possible that the name of a user or system listed

cm an AC L (meat ed long ago) is not the same as the name IKd IKt as Kw, jor UR until T I

of that user or system identified in the delegation certificate.

It is not practical to change all ACLS every time any portion
7 Restricted Delegations

of the name space is altered because there is no way to find

all the ACLS that contain a name. If we don’t accommodate

name changes in some way, the reference monitor has only
two choices: (1) deny access if a name in a delegation cannot

be found on the ACL; or (2) on every access, look up each

name on the ACL in the directory service and fetch that direc-

tory entry’s attributes to determine whether those attributes

match those of the user identified by the delegation certifi-

cates. Choice (1) is undesirable because many name changes

do not reflect a change in organizational afiiIiation, and choice

(z), involving a number of directory lookups proportional to

ACL size, could be a performance disaster.

To permit tire reference monitor to quickly determine

whether a name on the ACL refers to the same principal as

a different name in the certificate, it is better to put unique

identifying information (which does not change when names

change) in the certificates and in the ACLS, along with the

names. The reference monitor then mat ches up unique iden-

tifiers. If it finds a match, it looks up both names in the

directory service to see if they refer to the same principal (by

comparing certified information stored in the directory entry

for that principal).

In place of names in certificates we could use public keys

of the principals as unique identifiers, since public keys are

not expected to change as often as na.mes.3 A public key is a

reasonably good unique identifier for a delegated system, but

is not good enough for a user. This is because a user may

have multiple roles with different names, all sharing the same

public key contained in his smart card. Public keys do not

differentiate between roles.

A convenient source of unique names is a UID (uniquc-

identifier) that is maintained by the directory service when

a principal or role is created. Directory services are able to

maintain UIDS fairly well, and UIDS can be used for other

directory functions. Note that the directory service need not

be trusted for uniqueness of these UIDS, since the reference

monitor still verifies each ACL match with the actual cre-

dentials of the principal stored in the directory service. The

worst that can happen if role UIDS aren’t unique is that a

user will delegate a right he doesn’t have (e.g., because the

reference monitor has interpreted the role’s UID as belonging

A delegation certificate is very much like a capability that

grants broad powers, permitting access to any ob jcct accessi-

ble to the identified role. There are a number of cases where a

user might want to delegate only a subset of his rights rather

than all of his rights: the ability to access a restricted set of

files, or the ability to read, but not write his files. Adding

such mechanisms to this architecture is not hard (we would

add more fields to the delegation cert ificat e), but there seems

to be little reason to do so. It appears that almost all needs

for restricted delegations can be better addressed using roles

and other mechanisms.

7.1 Delegate Access to Subset of Files

A principal delegating to a system may want to delegate

access to only a subset of its accessible objects. With some ad-

vance planning this type of restriction is readily implemented

through the role mechanism as discussed in section 6.1. The

user creates a restricted role for access to a limited set of

objects, and places the restricted role name on the ACLS of

only those objects. When authenticating to a systcm that is

to have this limited access the user specifies the limited role

and then does the usual full delegation. Only objects with the

limited role on their ACLS will be accessible to the system.

This concept can be extended to a role per individual object,

but too many roles are likely to get out of hand since the user

has to manage and be aware of them. Another problem with

exclusively using roles to restrict access is that the user may

not have the ability to alter the ACLS of all the objects to

which he has access.

The current architecture does not support a generalized

ability for a user to make an on-the-spot ad hoc decision to

restrict access to specific objects on a per-delegation basis.

Mechanisms such as “constraints” [Sollins88] and capabilities

in the Monash system [Anderson86] offer means to dynami-

cally rest rict dclegat ed access, and are candidates for inclu-

sion in the delegation architecture if the need arises.

7.2 Delegate a Subset of Access Rights

to someone else) and all accesses will fail. The UID is needed DSSA does not constrain semantics of access requests or
solely as an aid to search the ACL. types of access rights that may be reqnestcd or recorded in

The UID of the principal or role, UR, is inserted into the ACLS because these details depend on the types of objects
first delegation certificate signed by the smart card and copied and operations implemented by each reference monitor. If a

3We recognize tkat urriql[enessof inrkpendently generated public
user is to restrict delegated access to some subset of possible

keys cannot be guaranteed, but the odds of duplication arc sufficiently
rights, the syntax and semantics describing that that subset

remote for oar purposes. Intentional duplication of a public key is not (specified in the delegation certificate) must be understood

possible arrlesstbe corresponding private key is compromised. by all reference rnrmitors likely to make use of the delegation.

27

www.manaraa.com

Since a nniversaJ standard for representation of access rights

is not available, delegation of arbitrary subsets is difficu~t.

One might be able to define a common set of rights like

“read” and “write” that all reference monitors are likely to

implement, but restriction to a subset of these is unlikely to

be useful except in special cases. Carrying out any activity on

a remote system is likely to require rights such as “login” or

“connect” to the remote system, rights defined by the system

manager of the remote system (or owner of the remote object)

which the user may know nothing about. In general, the user

will not have enough information to select the proper subset

of possible rights needed to accomplish a given task.

7.3 Delegation to Background Jobs

There are cases where a system must continue to operate

on behalf of a user after the user logs out. If success of an

operation depends on delegations, then the delegations must

remain valid for the duration of the operation. In many cases

the activity will complete within the expiration time of the

originaf delegation certificate so no change need be made to

the architecture described so far: the delegated system simply

retains its certificates even after the user logs out until all

requested operations are completed or the delegations expire.

But there are several cases where the system might have

to operate well beyond the normal expiration time of dele-

gation certificates. Deferred background or batch jobs (those

that are scheduled to run at a specific time in the future, in-

cluding jobs that rerun themselves on a periodic basis) are

the most common examples, although any bat ch job could

remain pending in queues for an arbitrary length of time be-

fore it runs. If such batch jobs require delegations, then the

delegations must be in effect when the job runs. A delega-

tion to such a job might have to have a very long timeout,

and long timeouts reduce the security offered by the timeout

mechanism. Nonet helcss, we believe that extending the time-

outs for such jobs is an acceptable risk in most cases. After

all, if the user expects a system to operate on his behalf at

some time in the future, he should be willing to delegate to

it for that expected amount of time.

For batch jobs that run far in the future the role mechanism

is a suitable way to restrict access. Setting up such batch jobs,

especially those that run on a daily basis, normally requires

some advance planning by the user, and such jobs usually

carry out for very specific functions (e.g., check for mail). It

is not unreasonable to expect users to set up special roles for

these selcctcd jobs.

7.4 Limited Delegation to Servers

There is at least one specific case where limited delegation

to a server might make sense. This involves print servers.

When submit ting a print request to a server thc user might

like to limit the server’s access to only the file to be printed,

only for a limited time, and only for a single access.

Possibly the most reasonable approach is to simply copy

the file to the print server as part of the print request, rather

than having the print server access the file directly at time

of printing. The only major drawback from this scheme is

that the user may have to wait for his file to be queued for

printing, as the print server will only be able to store a finite

number of fries.

In today’s printing architectures a print job may consist of

multiple included files and fonts fetched by the print server

from places that the user knows nothhg about. Under these

sophisticated schemes simple delegation of rights to a single

named file will not generally permit the file to be printed.

7.5 Delegation to Users

Within DSSA we do not intend users to be the targets

of delegation. Delegation requires the delegator to exchange

information with the delegated principal. While we could

devise a scheme whereby two smart cards communicate with

one another in a trusted manrrcr, doing so in practice would

be cumbersome. Also, a smart card that is the target of a

delegation would have to generate and remember a separate

delegation key for each delegation for which it is a targct,

and would have to know which key to use in a given session.

Delegating to a user is better handled with some advance
planning in the use of roles.

8 Improving Performance

It is well known that calculations using RSA public key tech-

niques are computationally intensive. The primary operations

wit h which this archit cct ure needs to be concerned are digital

signatures (using the private key), verifying signatures (using

the public key) and key generation (for delegation keys). Key

generation is by far the most time consuming operation. By

choosing short public exponents and long private exponents,

we can arrange for signature verification, which is done rel-

at ivcly frequent 1y, to be quite fast, while the less frequent

operation, digit al signing, is much slower.

The need for a signature for each dclegatiorr is not expected

to add much delay to the establishment of a session. This is

because protocols can be structured so that signature takes

place in parallel with network communication. While we envi-

sion situations where a systcm may need to check large num-

bers of signatures (e.g., a server that receives access requests

from large numbers of systems), we do not foresee a case

where a system has to sign large numbers of cert ificat es.

Key gcnoration appears to be the moat acrious performance

concern, and this architect nre requires a new key for each

delegation in each chain. To address this problcrn wc have

investigated several optimization:

● Generate keys in advance. During pcriorls of idle
processing, systems can generate keys in anticipation of

delegation and can keep a cache of ready keys. These

keys can sa.fcly be kept in online storage as long as they

are erased from disk when used for a delegation and not

used if the disk has been removed.

28

www.manaraa.com

● Reuse unused keys. Depending cm the implementa-
tion oft he protocols, many delegations will occur but will
never be used. That is, a system will delegate to another
system at the beginning of a session in case remote access
is required, but the resources might be local to the dele-
gated system and the delegation may never be required.
In this case the sarnc delegation key can be reused for
the next delegation. This technique is only secure if the
delegation certificate is destroyed by both delegator and
delegate and never disclosed to a third party.

. Use short keys. Time to generate a key is a func-
ticm of key length. Unlike principals’ authentication keys
that are relatively permanent and stored in authrmtica-
tirxr certificates in the directory service, delegation keys
are only needed for the duration of a session. As long
as the public component of the delegation key is never
used for confidentiality (it is not in our architecture), no
harm is done if the key is compromised after the dele-
gation expires. We can therefore probably get by with
much shorter (lCSSsecure) keys for delegation than would
be needed for long term use.

Avoid unnecessary keys. The architecture is rle-
srxibed in terms of principals rather than users and comp-
uter systems, where a principal may be a process or

application on a system. It is possible, then, for rnanY
principals to exist on the same computer system. In the
case where the delegator and delegate are principals un-
der control of the same reference monitor (i.e., are two
processes on the same system), it is not necessary to use
cryptographic techniques to certify the portion of the
delegation chain involving the two principals. Instead,
thc rcfcrcnce monitor maiut ains a single delegation key
for all processes under its control that arc part of the
same chain. The reference rnorritor keeps track of the
keys that processes may use. only when the delegation
chain “enters” and “leaves” the systcm is cryptography
required.

Copy delegation keys. Although wc statrxl earlier that
ideally we would like each system to have its own riele-
gatiorr key, significant security is not lost in most cases
by simply forwarding the key from one system to the
next. In the event that kcy generation becomes a prob-
lem in certain applications, the architecture prwmits any
two systems to resort to kcy copying without affecting
any of the other aspects of the architecture.

While key generation performance is not something to ignore,
we think that there are enough ways to minimize the problcm
that feasibility of implementing the delegation architecture is
not in danger.

9 Conclusion

The delegation scheme presented in this paper is an important
component of Digital’s Distributed System Security Architec-
ture. Items yet to be done inclnde a formal definition and, of

course, prototype implement ations. A formal dcfini tion and
justification for all of DSSA is being written using notation
and rules to express statements of belief and trust, The logic
we arc using is an cxtcnsiorr of that defined by Burrows, et
al. [Burrows88]. Rangan [Rangan88] has drwclopcd a more
complete method for forrualizing reasoning and trust in a dis-
tribrrtcrl systcrn, but it appears that a simpler logic will bc
adequate to express the basic concepts of DSSA.

The goal of DSSA is to elevate the lCVC1of security of a
heterogeneous distributed system to that routinely available
with today’s state-of-the-art standalone secure operating sys-
tems. The architecture is not a theoretical exercise, but was
designed with numerous practical implementation issues in
mind. It is intended to bc irnplcmcntcd, at reasonable cost
and performance, using techmdogy that wc expect to be avail-
able in the very near future. Initial installments of this archi-
tecture will be deployable without a wholesale rcplacemcrrt of
existing hardware, oprxatiug systcrns, and applications, and
we are currently devch]piug prototypes to demonstrate this
fcasibilit y.

At the same time, DSSA does not commit us to undesirable
tradeoffs that may be due to limitations of today’s tcchrlol-
ogy. Since architectures, once implerncntcd, do not die easily,
we have set our sights on a long tcrrn goal to provide the
maximum level of sccnri ty for the widest possible varicty of
computing styles and applications.

References

[Amcs83]

[Andcrson86]

[Birrcl18ti]

[Bnrrows88]

[CCITT88a]

[CCITT88b]

S. R.. Ames, Jr., M. Gasrwr, and R. R.
Schell, “Security Kernel Design and Implemen-
tation: An Introduction,” Com,puter, 16(7):14-
22, July 1983.

M. Anderson, R.. D. Pose, and C. S. Wallace,
“A Password-Capability System,” The Corn-

pufer Journal, 29(1):1 8, 1986.

A. D. Birrcll, B. W. Lampson, R. M. Nccdharn,
and M. D. Schroeder, “A Global Authcntica-
tiorr Service without Global Trust,” Proceed-

ings of the 1986 IEEE Symposium on Secu,rit y

and Privo.cy, IEEE Cornpnter Society, 1986,
pp. 223 230.

M. Burrows, M. Abadi, and R. M. Needham,
“Authentication: A Practical Study in Belief
and Action,” Proceedin.,qs of the Second Con-

ference on Theoretical Aspects of Reasonin,q

about Knowledge, M. Vardi, cd., 1987.

International Telegraph and Telephone Con-
sultative Committee (CCITT), X.500, The Di-

rectory – Over-view of Concepts, Models and
Ser-rnces(same as 1S0 9594-1).

CCITT X.509 The Dwectory - Autl~enticar!ion,

Framework (same as 1S0 9594-8).

29

www.manaraa.com

[DOD85]

[ECMA89]

[Gasser89]

[Girling82]

[Girling83]

[IS088b]

[Karger86]

[Koh189]

[Lampson86]

[Lirm90]

[Miller87]

[Mullender85]

[Organick72]

Department of Defense, Trusted Computer

System Evaluation Criteria, DOD 5200.28-
STD, December 1985.

ECMA/TR46, “Security in Open Systems - A
Security Framework” and ECMA/TRxx, “Se-
curity in Open Systems – Data Elements and
Service Definitions.”

M. Gasser, A. Goldstein, C. Kaufman and B.
Lampson, “The Digital Distributed System Se-
curity Architecture: Proceedings of the 1989
National Computer Security Conference.

C. G. Girling, “Object Representation on a
Heterogeneous Network,” Operating Systems
Rewew 16:49--59, October 1982.

C. G. Girling, “Representation and Authen-
tication in Computer Networks,” Ph.D. The-
sis, University of Cambridge, Queens’ College,
April 1983.

International Standards Organization, 1S0
7498-2, Security Architecture.

P. A. Karger, “Authentication and Discre-
tionary Access Control in Computer Net-
works,” Computers and Security 5:314-24,
1986, and Computer Networks and ISDN Sys-

tems 10(1):27- 37, 1985.

J. Kohl, B. C. Neuman, J. Steiner, “Kerberos
Version 5 draft RFC”, Project Athena, Mas-
sachuset ts Institute of Technology, 3 August
1989.

“Designing a Global Name Service,” Proc. 4th
ACM Symposium on Principles of Distributed

Computing, pp. 1-10, Minaki, ontario, 1986.

J. Linn, “Practical Authentication for Dis-
tributed Computing,” Proceedings of the 1990
IEEE Symposium on Security and Prnmcy,

IEEE Computer Society, 1990.

S. P. Miller, B. C. Neuman, J. I. Schiller, and
J. H. Saltzer, “Kerberos Authentication and
Authorization System,” Project Athena Tech-
nical Plan, Section E.2. 1, Massachusetts Insti-
tute of Technology, 10 April 1987.

S. J. Mullender, “Principles of Distributed
Operating System Design,” Ph.D. Thesis,
Vrije University, Amsterdam, The Nether-
lands, 1985.

E. I. Organick, The iWv,ltics System: An Ex-

amination of Its Structure, MIT Press, Cam-
bridge, Massachusetts, 1972.

[NCSC87a]

[Racal]

[Rangan88]

[Redel174]

[Rivest78]

[Sollins88]

“Final Evaluation Report of Security Dynam-
ics Access Control Encryption System,” Na-
tional Computer Security Center, 9800 Savage
Road, Fort George G. Meade, MD 20755-6000,
CSC-EPL-87/001 Library No. S228,455.

“WATCHWORD Generator User’s Man-
ual,” Racal-Guardata Limited, Richmond
Court, 309 Fleet Road, Hampshire, England
GU138BU.

P. V. Rangan, “An Axiomatic Basis of Trust
in Distributed Systems,” Proceedings of the

1988 IEEE Sympostum on Security and Prz-

vacy, IEEE Computer Society, 1988, pp. 204–
211.

D. D. Redcll, “Naming and Protection in
Extendible Operating Systems,” Ph.D. The-
sis, University of California, Berkeley, CA,
published as Project MAC TR- 140, Mas-
sachusct ts Institute of Technology, Cambridge,
MA, November 1974.

R. L. Rivcst, A. Shamir, L. Adleman, “A
Method for Obtaining Digital Signatures and
Public Key Cryptosystems,” Communications

of the ACM, 21(2):120 126, 1978.

Karen R. Sollins, “Cascaded Authentication”
Proceedings of the 1988 IEEE Symposium on

Security and Privacy, IEEE Computer Society,
1988, pp. 156163.

30

